土著非洲语言在人工智能中被归类为服务不足,并且数字包容性和信息获取差。挑战是如何在没有必要数据的情况下使用机器学习和深度学习模型。 Kencorpus是一种肯尼亚语言语料库,打算弥合有关如何收集和存储文本和语音数据的差距,足以启用数据驱动的解决方案,例如机器翻译,多语言社区中的问题回答和转录。 Kencorpus是一种主要在肯尼亚说的三种语言的语料库(文本和语音):斯瓦希里语,Dholuo和Luhya(方言Lumarachi,Lulogooli和Lubukusu)。该语料库打算填补开发数据集的空白,该数据集可用于低资源语言的自然语言处理和机器学习任务。这些语言中的每一种都为语言语料库贡献了文本和语音数据。数据收集是由社区,学校和合作伙伴(媒体,出版商)的研究人员完成的。 Kencorpus有5,594个项目的集合,为4,442个文本(560万字)和1,152个语音文件(177小时)。基于这些数据,还开发了其他数据集,例如Dholuo和Luhya的POS标记集(分别为50,000和93,000个单词),来自Swahili文本(7,537 QA对)的问答对,以及将文本转换为Swahili(12,400句子)。数据集可用于机器学习任务,例如文本处理,注释和翻译。该项目还在QA任务的文本和机器学习语音和机器学习中为概念系统提供了证明,最初的结果证实了Kencorpus对机器学习社区的可用性。 Kencorpus是这些低资源语言的第一个此类语料库,并且是学习和共享类似作品的经验的基础。
translated by 谷歌翻译
The need for Question Answering datasets in low resource languages is the motivation of this research, leading to the development of Kencorpus Swahili Question Answering Dataset, KenSwQuAD. This dataset is annotated from raw story texts of Swahili low resource language, which is a predominantly spoken in Eastern African and in other parts of the world. Question Answering (QA) datasets are important for machine comprehension of natural language for tasks such as internet search and dialog systems. Machine learning systems need training data such as the gold standard Question Answering set developed in this research. The research engaged annotators to formulate QA pairs from Swahili texts collected by the Kencorpus project, a Kenyan languages corpus. The project annotated 1,445 texts from the total 2,585 texts with at least 5 QA pairs each, resulting into a final dataset of 7,526 QA pairs. A quality assurance set of 12.5% of the annotated texts confirmed that the QA pairs were all correctly annotated. A proof of concept on applying the set to the QA task confirmed that the dataset can be usable for such tasks. KenSwQuAD has also contributed to resourcing of the Swahili language.
translated by 谷歌翻译
With an ever-growing number of parameters defining increasingly complex networks, Deep Learning has led to several breakthroughs surpassing human performance. As a result, data movement for these millions of model parameters causes a growing imbalance known as the memory wall. Neuromorphic computing is an emerging paradigm that confronts this imbalance by performing computations directly in analog memories. On the software side, the sequential Backpropagation algorithm prevents efficient parallelization and thus fast convergence. A novel method, Direct Feedback Alignment, resolves inherent layer dependencies by directly passing the error from the output to each layer. At the intersection of hardware/software co-design, there is a demand for developing algorithms that are tolerable to hardware nonidealities. Therefore, this work explores the interrelationship of implementing bio-plausible learning in-situ on neuromorphic hardware, emphasizing energy, area, and latency constraints. Using the benchmarking framework DNN+NeuroSim, we investigate the impact of hardware nonidealities and quantization on algorithm performance, as well as how network topologies and algorithm-level design choices can scale latency, energy and area consumption of a chip. To the best of our knowledge, this work is the first to compare the impact of different learning algorithms on Compute-In-Memory-based hardware and vice versa. The best results achieved for accuracy remain Backpropagation-based, notably when facing hardware imperfections. Direct Feedback Alignment, on the other hand, allows for significant speedup due to parallelization, reducing training time by a factor approaching N for N-layered networks.
translated by 谷歌翻译
The SINDy algorithm has been successfully used to identify the governing equations of dynamical systems from time series data. In this paper, we argue that this makes SINDy a potentially useful tool for causal discovery and that existing tools for causal discovery can be used to dramatically improve the performance of SINDy as tool for robust sparse modeling and system identification. We then demonstrate empirically that augmenting the SINDy algorithm with tools from causal discovery can provides engineers with a tool for learning causally robust governing equations.
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译
The success of deep learning is largely due to the availability of large amounts of training data that cover a wide range of examples of a particular concept or meaning. In the field of medicine, having a diverse set of training data on a particular disease can lead to the development of a model that is able to accurately predict the disease. However, despite the potential benefits, there have not been significant advances in image-based diagnosis due to a lack of high-quality annotated data. This article highlights the importance of using a data-centric approach to improve the quality of data representations, particularly in cases where the available data is limited. To address this "small-data" issue, we discuss four methods for generating and aggregating training data: data augmentation, transfer learning, federated learning, and GANs (generative adversarial networks). We also propose the use of knowledge-guided GANs to incorporate domain knowledge in the training data generation process. With the recent progress in large pre-trained language models, we believe it is possible to acquire high-quality knowledge that can be used to improve the effectiveness of knowledge-guided generative methods.
translated by 谷歌翻译
Object detection models commonly deployed on uncrewed aerial systems (UAS) focus on identifying objects in the visible spectrum using Red-Green-Blue (RGB) imagery. However, there is growing interest in fusing RGB with thermal long wave infrared (LWIR) images to increase the performance of object detection machine learning (ML) models. Currently LWIR ML models have received less research attention, especially for both ground- and air-based platforms, leading to a lack of baseline performance metrics evaluating LWIR, RGB and LWIR-RGB fused object detection models. Therefore, this research contributes such quantitative metrics to the literature .The results found that the ground-based blended RGB-LWIR model exhibited superior performance compared to the RGB or LWIR approaches, achieving a mAP of 98.4%. Additionally, the blended RGB-LWIR model was also the only object detection model to work in both day and night conditions, providing superior operational capabilities. This research additionally contributes a novel labelled training dataset of 12,600 images for RGB, LWIR, and RGB-LWIR fused imagery, collected from ground-based and air-based platforms, enabling further multispectral machine-driven object detection research.
translated by 谷歌翻译
We present an update on the current architecture of the Zoea knowledge-based, Composable Inductive Programming system. The Zoea compiler is built using a modern variant of the black-board architecture. Zoea integrates a large number of knowledge sources that encode different aspects of programming language and software development expertise. We describe the use of synthetic test cases as a ubiquitous form of knowledge and hypothesis representation that sup-ports a variety of reasoning strategies. Some future plans are also outlined.
translated by 谷歌翻译
Statistical risk assessments inform consequential decisions such as pretrial release in criminal justice, and loan approvals in consumer finance. Such risk assessments make counterfactual predictions, predicting the likelihood of an outcome under a proposed decision (e.g., what would happen if we approved this loan?). A central challenge, however, is that there may have been unmeasured confounders that jointly affected past decisions and outcomes in the historical data. This paper proposes a tractable mean outcome sensitivity model that bounds the extent to which unmeasured confounders could affect outcomes on average. The mean outcome sensitivity model partially identifies the conditional likelihood of the outcome under the proposed decision, popular predictive performance metrics (e.g., accuracy, calibration, TPR, FPR), and commonly-used predictive disparities. We derive their sharp identified sets, and we then solve three tasks that are essential to deploying statistical risk assessments in high-stakes settings. First, we propose a doubly-robust learning procedure for the bounds on the conditional likelihood of the outcome under the proposed decision. Second, we translate our estimated bounds on the conditional likelihood of the outcome under the proposed decision into a robust, plug-in decision-making policy. Third, we develop doubly-robust estimators of the bounds on the predictive performance of an existing risk assessment.
translated by 谷歌翻译
Physical interactions can often help reveal information that is not readily apparent. For example, we may tug at a table leg to evaluate whether it is built well, or turn a water bottle upside down to check that it is watertight. We propose to train robots to acquire such interactive behaviors automatically, for the purpose of evaluating the result of an attempted robotic skill execution. These evaluations in turn serve as "interactive reward functions" (IRFs) for training reinforcement learning policies to perform the target skill, such as screwing the table leg tightly. In addition, even after task policies are fully trained, IRFs can serve as verification mechanisms that improve online task execution. For any given task, our IRFs can be conveniently trained using only examples of successful outcomes, and no further specification is needed to train the task policy thereafter. In our evaluations on door locking and weighted block stacking in simulation, and screw tightening on a real robot, IRFs enable large performance improvements, even outperforming baselines with access to demonstrations or carefully engineered rewards. Project website: https://sites.google.com/view/lirf-corl-2022/
translated by 谷歌翻译